Index |
Core Baluns (published in
Electron #4, 2007) General This chapter is the third in a series of
articles on baluns for antenna applications. The first article is an
introduction with some background on balun
types. The second article is on wire baluns.
It is advisable to read the articles in the above order especially since each
next chapter is building on information and formula's already explained
earlier and referencing to this. Introduction When going from an a-symmetrical to a
symmetrical system some form of adaptation / matching should be applied to
uphold the integrity of both systems. This may be accomplished by ensuring no
current to flow anywhere except for the desired signal path. A simple and
direct way to prevent other currents to flow is blocking-of all other current
path'. A sleeve choke, 1 : 1 current transformer or current balun will
perform this system function. The better this choke, i.e. higher impedance,
the better this current balancing function in the signal path. With the current balun requirements as
settled, we checked the performance of a wire-balun in the previous chapter.
Here we discovered this component could well be constructed for a limited
frequency range (1 : 3), but was increasingly more difficult to design for
higher bandwidth. Main problems were leakage inductance at lower frequencies
and high parasitic capacitance to limit the high frequency side. Both
problems may be attacked when applying a ferrite core at the balun since high
permeability will enhance inter-winding coupling (prevent leakage inductance)
while at the same time allowing for a lower number of turns (diminishing
parasitic capacitance). As an example we will calculate a 1 : 1
current balun around a At the manufacturers web-site we will find
for this material and core shape the winding factor n = Ö16 / 0.17 = 9,6 (10) , which leads
to the construction as in figure 1.
Note: The balun in figure 1 has been
constructed using RG58 coaxial transmission line. Since the electromagnetic
field is 'locked-up' inside the transmission line, the integrity is being
preserved independently of the 'handling' of the line, whether in a straight
line, curled up or around some core material. This applies to coaxial
transmission-line as well as symmetrical line types. Since the latter is not
as 'closed' as coax, turns should not be wound too closely and preferably not
to overlap. Transmission The balun as above has been constructed and
measured in a condition of maximum unbalance, as discussed before. Results
for transmission (insertion loss) may be found in figure 2.
The insertion-loss for the 1 : 1 current
balun on 4C65 may be directly compared to the wire balun in the previous
chapter. It is easily noticed the 4C65 construction to perform significantly
better, with the 1 dB loss position at the lower frequency side to have
shifted from 1,8 MHz. to 0,9 MHz.
and the high frequency side from just over 50 MHz.
to over 150 MHz. In the interesting frequency range
3 - 30 MHz., insertion loss has improved from 0,16
dB on average to 0,07 dB and this may be regarded as almost 'ideal'. Reflection As with the wire balun we also measured
reflection with the balun again terminated into 50 Ohm. The results of this
measurement may be found in figure 3.
Again the improvement as related to the wire
balun is clearly visible. SWR is very low (1,03) from the first measuring
frequency at 0,5 MHz. (compare to SWR = 1,5 @ 4 MHz. for the wire balun), up to SWR = 1,25 at 200 MHz. (compare to SWR = 1,5 @ 50 MHz.). Power There is not such a thing as a free lunch, so
we may be curious as to what price these excellent properties? As it happens, price to pay is very low. In
the chapter on HF ferrite
applications we found that above 3 MHz. maximum
core load is determined by power dissipation inside the core, with highest
stress at the highest operational frequency. In the same chapter we derived a
formula for the system voltage that will make core temperature rise by 30 K.
at the maximum internal power dissipation of Pmax.
UL(dissipation)
= √(Pmax
. XL (Q/6 + 1/Q)) with Pmax
= 4 Watt for this UL(dissipation) = 115 V, allowing
for a system power of 265 W in a 50 Ohm system. We should be aware (again) that above
calculation is for a system impedance of 50 Ohm, e.g. about the impedance of
a resonating dipole antenna. Outside resonance, impedance will be much
higher, even though the antenna tuner in the shack will have transformed all
odd impedances back to 50 Ohm for the transceiver. The balun may therefore be
stressed beyond allowable limits without the operator being aware of this. In the first chapter on baluns we discovered
the minimum choke impedance of four times the system impedance. It is not
important how this impedance is created, as long as this is high which is the
same is we found in Ferrites
for EMC applications. One therefore may be wondering whether only HF
ferrites will qualify and what would happen when applying LF ferrite
materials? To test this, I made the same balun (10 turns
on Transmission Measuring set-up is identical to the other
tests (under maximum unbalance conditions) and results may be found in figure
4.
As may be expected the low frequency behavior
is even better than with the 4C56 core, and will probably extnd
to far below the lowest test frequency of 0,5 MHz.,
although we do not need this for HF applications. At the high frequency side
we find a 1 dB loss at 100 MHz. because this LF
material really was designed for low frequencies. At 100 MHz.
even the material's loss-factor is at the end of its operational life. Reflection Reflection properties of this 3E25 balun may
be found in figure 5.
Measurements extend to 0,5 MHz. but are so close to the X-axis that this is not
showing in this graph anymore. Again we find a very useful component for HF
frequencies that may be applied to over 100 MHz. Power Since parameters are different again for this
core material, we calculate maximum voltage across this choke with the
formula above, at highest operational frequency, to find UL(dissipation)
= 100 V. This allows for a system power of over 200 Watt in a 50 Ohm
system. Although exhibiting somewhat less bandwidth and power than the
balun on 4C65, also this 3E25 balun will perform an excellent job over the
entire HF frequency range. Since this is a (very) low frequency material it
is save to say that all ferrite material from the
junk box will qualify as a core for a current balun. Parasitic capacity As we have discovered, these current baluns
will perform well as long as the sleeve impedance is high. In practice we
find a parasitic capacitance in parallel to the choke with a diminishing
impedance with frequency. Since the value of a capacitor is related to the
voltage across, we like to keep first and last turn of the choke as far apart
as possible. When measuring the effect of distance it appears that for these
current baluns a distance of about one centimeter (two RG58 diameters) is
sufficient for this capacitance effect to be low. An alternative winding technique has been tested
to keep this first to last turn far apart. This technique first puts half the
number of turns on the core and then crosses over to complete the other half
of the turns in the opposite direction. First and last turn will end up half
a core diameter away. As it happens, cut-off frequency was lower than with
the straight winding method, so this allegedly 'better technique' is no
improvement. In the last chapter and also before the role
of the parasitic capacitance at the high frequency side was clear and was a
limiting band-width factor. To diminish this capacitance we may consider to
not coil-up the transmission-line around the core, but 'coil the core' around
the transmission-line. The latter situation arises when stringing ferrite
beads on the transmission-line since we also know that every time the line
passes through the center hole of the toroide, this accounts for a full turn.
The string of beads therefore acts like many reactances
in series, as also applies to parasitic capacitances. When constructing this 'bead-balun' at RG58
coaxial cable (diameter is Since maximum dissipation of these beads is
scaling with the root of volume (see Ferrites in HF applications)
, maximum power dissipation of a 4A11 bead of this size is 30 mW. Maximum voltage per bead is: UL(dissipation) =
1,6 V., allowing for maximum voltage of 90 V. for the 56 bead balun, which
translates to maximum system power of 160 Watt in a 50 Ohm system. Although
all ferrite batches are created equal, some beads may be more equal than
others making up for a different voltage distribution, so a maximum 100 Watt
would be a safer limit for total system power. When preferring somewhat larger RG213 cable
with outside diameter of Except for using a lower number of beads,
everything else did not really change that much. Also the route along the 3E25 road is not
really better since the number of beads, the μ' and μ" will be
lower making maximum allowed system power even lower still. It is clear bead
baluns will be superior for very-wide bandwidth applications (EMC
measurements) but will be less practical in HF (only) applications since the
simple 10 turn, Up to now we have been discussing current
baluns since we found in the first chapter this to be the device we would
need to match a symmetrical dipole to an a-symmetric transmission-line. Still
one may regularly find voltage baluns
recommended for this type of applications in ham magazines. The usual
construction of this voltage balun is a trifilarly
wound transformer, wired-up such that the balanced connection is taken around
a 'ground' connection and the a-symmetrical side with reference to this
ground terminal as in figure 6.
In figure 6 we find the generator connected
across two windings of the transformer with the balanced side also taken from
two windings. Since all windings consist of the same number of turns (trifilar) and are closely coupled, input and output
voltages are equal. In the diagram the balanced output is
situated around a 'grounded' terminal, which may not be so very much 'grounded'
anymore at the end of the feed-line. According to 'Reference data for Radio
Engineers', standard hook-up wire is showing an inductance of 1,6 mH/mile (1 μH/m) for
frequencies between 3 - 30 MHz. For a feed-line
length of The model of figure 6 may be constructed as
in figure 7, when applying the same principles as in our earlier designs (10
turns on
Measurement at ideal
operating conditions To measure this transformer at ideal
operating conditions, I constructed two transformers and connected these
'back-to-back' to keep the balanced side in-between the transformers at a
perfectly balanced level. Results of the measurements have been 'halved' to
represent each of the transformers. Transmission Results of the transmission measurement may
be found in figure 8.
The insertion loss as in figure 8 is showing
a fairly good transformer that starts dropping-off below 1 MHz. and above 60 MHz. In
between the graph is flat and is showing low loss. Reflection Reflection characteristic of the trifilar voltage balun may be found in figure 9.
The graph of figure 9 is showing SWR which is
somewhat better than the first wire balun in the previous chapter at the low
frequency side but definitely worse at the high frequency end. Also
in-between cut-off frequencies the SWR is not really low at 1,25. All in all
this is a marginally performer. Measuring under
practical conditions In the above situation the voltage balun has
been tested under 'ideal' conditions, i.e. a condition of perfect balance. In
a practical situation there usually is some form of unbalance, up to total
unbalance in an adverse situation. Therefore all earlier baluns have been
tested in a fully unbalanced situation to prevent surprises when in an
operational situation. To compare balancing qualities of various balun types,
also this voltage transformer has been tested under the same conditions with
one output terminal grounded, to simulate a condition of maximum unbalance.
The voltage balun however is not a symmetrical device as may be appreciated
when regarding figure 6. One output terminal is connected to a winding to the
generator, while the other output terminal is left open. For a complete
impression we therefore have to measure this voltage balun two times, with
different output terminals grounded. Note, this unequal situation also exists for
the current baluns. In testing with the 'center-conductor' grounded we always
have been measuring under most unfavorable conditions. With the other
terminal grounded in a current balun, we would have measured just an other transmission-line with only transmission-line
damping as a non-ideal condition. Also when measuring in reflection only a
'perfect' transmission-line would have been found. Transmission Two measurements, each with a different
output terminal grounded may be found in figure 10.
In figure 10 we indeed see different behavior
depending on the grounded terminal. Even the best of the two graphs only is
showing insertion loss below one dB over a limited HF frequency, and only
above 10 MHz. This is not the type of behavior we
would like to see. Reflection To complete this series, we also have
measured the reflection characteristics, as shown in figure 11.
Again in figure 11 we find a component that
will not qualify in an antenna system and for which reflection is
un-acceptably high at all frequencies. Note the vertical axes of the diagram
has been changed with respect to earlier and comparable diagrams to show
anything at all on this voltage transformer. This 'weird' behavior may be better
understood when looking again at figure 6; by grounding one of the output
terminals the voltage transformer is partly shortened out. The transfer
characteristics may be affected less because of capacitive coupling 'across'
the transformer. When adding all up it is obvious this voltage
transformer is not the ideal component (to say the least) to connect a
balanced antenna to an unbalanced transmission-line and it is surprising (this type of) voltage baluns are still to
be found in some antenna system and / or be recommended in magazines for this
application. Some conclusion about 1 : 1 baluns on ferrite cores From the above it may be concluded that a current balun in general is the
component of choice to connect a symmetrical antenna to an a-symmetrical
feed-line. When constructing this current balun, any ferrite material from
the junk-box will do. When applying a Since the 1 : 1 current balun is based on
isolating the input from the output terminals, the same quality may be
applied to good use to stop undesired HF currents to arrive at the
transceiver. It's therefore good practice to also apply this current balun /
sleeve choke at the other side of the feed-line at the receiver or at any
other electrical appliance that is picking up HF currents (audio / video
equipment). Voltage baluns should be avoided around balanced
antenna systems because of sensitivity of these components to any type of
unbalancing (trifilar balun) or because of
diminishing internal coupling (other flux-transformer types). Current baluns on powder-iron (carbonyl) cores So far we discussed sleeve chokes / current
baluns in the form of larger coils 'on air' or on ferrite cores. Sometimes also baluns on powder-iron / carbonyl
cores are being offered, which should be regarded with some care. To compare
with ferrite materials, let's look at the For current baluns / sleeve chokes, powder
iron / carbonyl type of materials are less suitable materials. Please contact me for your remarks and
suggestions at: Bob J. van Donselaar, on9cvd@veron.nl |
|